Association Between Helicobacter pylori Eradication and Gastric Cancer Incidence: a Systematic Review and Meta-analysis

Yi-Chia Lee, MD PhD, Tsung-Hsien Chiang, MD MSc, Chu-Kuang Chou, MD, Yu-Kang Tu, DDS PhD, Wei-Chih Liao, MD PhD, Ming-Shiang Wu, MD PhD, David Y. Graham, MD

PII: S0016-5085(16)00120-7
DOI: 10.1053/j.gastro.2016.01.028
Reference: YGAST 60255

To appear in: Gastroenterology
Accepted Date: 24 January 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Title: Association Between *Helicobacter pylori* Eradication and Gastric Cancer Incidence: a Systematic Review and Meta-analysis

Short title: *Helicobacter pylori* eradication and gastric cancer incidence

Authors and affiliations:

Yi-Chia Lee MD PhD¹²*, Tsung-Hsien Chiang MD MSc¹³⁴*, Chu-Kuang Chou MD¹⁵,
Yu-Kang Tu DDS PhD², Wei-Chih Liao MD PhD¹², Ming-Shiang Wu MD PhD¹⁶,
David Y Graham MD⁷

1. Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan

2. Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan

3. Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan

4. Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan

5. Division of Gastroenterology and Hepatology, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
6. Department of Primary Care Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan

7. Department of Medicine, Michael E. DeBakey VA Medical Center, and Baylor College of Medicine Houston, TX, USA

* The authors contributed equally to this work.

Correspondence to:

Wei-Chih Liao, MD PhD

Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10002, Taiwan

Telephone: +886-2-23123456 ext. 63356, Fax: +886-2-23947899

E-mail: david.ntuh@gmail.com

and

Ming-Shiang Wu, MD PhD

Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10002, Taiwan

Telephone: +886-2-23123456 ext. 65410, Fax: +886-2-23947899

E-mail: mingshiang@ntu.edu.tw

Conflict of Interest disclosure: Dr. Graham is a consultant for RedHill Biopharma regarding novel *H. pylori* therapies and has received research support for culture of *H.*
he is a consultant for Otsuka Pharmaceuticals regarding diagnostic breath testing and for BioGaia in relation to probiotic therapy for *H. pylori* infection. Other authors do not have conflicts of interest. Other authors report no conflict of interest.

Grant Support: This study was supported by the Health Promotion Administration, Ministry of Health and Welfare (MOHW103-TDU-212-114009), National Taiwan University Hospital (104-P01), and National Research Program for Biopharmaceuticals (104-2325-B-002-029). The funding source had no role in study design, data collection, analysis or interpretation, report writing or the decision to submit this paper for publication.

Contributors: The study was conceived by YC Lee, WC Liao, and MS Wu, with input from all the other listed contributors. YC Lee and TH Chiang contributed equally in this work. WC Liao and MS Wu contributed equally in this work. TH Chiang, YK Tu, and WC Liao conducted the statistical analyses. TH Chiang and CK Chou reviewed the literature. YC Lee, TH Chiang, WC Liao, YK Tu, and DY Graham drafted the article and all authors commented on drafts and approved the final version.

Funding: This study was supported by the Health Promotion Administration, Ministry of Health and Welfare, National Taiwan University Hospital, and National Research Program for Biopharmaceuticals.
ABSTRACT

Background & Aims: Eradication of *Helicobacter pylori* infection has been reported to reduce the risk of gastric cancer among asymptomatic individuals in high-risk areas. The magnitude of benefit of *H pylori* eradication in populations with different levels of gastric cancer risk and in different clinical scenarios is unclear. We performed a systematic review and meta-analysis of randomized controlled trials and observational studies to investigate the effects of *H pylori* eradication on the incidence of gastric cancer.

Methods: We searched PubMed, Cochrane Library, and ClinicalTrials.gov, reviewing titles and abstracts of studies of the effects of eradication of *H pylori* infection on risk of gastric cancer, through May 2015. We also searched bibliographies of included studies, related reviews, and abstracts presented at Digestive Disease Week. Twenty-four eligible studies (22 research manuscripts and 2 abstracts) were included in our meta-analysis (715 incident gastric cancers among a total of 48,064 individuals/340,255 person-years). We assessed the effects, as well as their modification by baseline gastric cancer incidence, study design (randomized trial vs observational study), clinical scenario (asymptomatic infected individuals vs individuals after endoscopic resection of early gastric cancer), demographic characteristics of patients (age and sex), and duration of follow up.
Results: After adjustment for baseline gastric cancer incidence, individuals with eradication of \textit{H pylori} infection had a lower incidence of gastric cancer than those who did not receive eradication therapy (pooled incidence rate ratio, 0.53; 95% confidence interval (CI), 0.44–0.64). There was little heterogeneity among studies. Baseline gastric cancer incidence modified the benefit of \textit{H pylori} eradication ($P=0.037$ for interaction); the incidence rate ratio of gastric cancer decreased in a non-linear fashion with increasing baseline incidence of gastric cancer ($P=0.018$, in comparison with the linear model). The benefit also modestly increased with age ($P=0.023$ for interaction), but this might be due to correlation between age and baseline gastric cancer incidence. Eradication provided significant benefit for asymptomatic infected individuals (pooled incidence rate ratio, 0.62; 95% CI, 0.49–0.79) and individuals after endoscopic resection of gastric cancers (pooled incidence rate ratio, 0.46; 95% CI, 0.35–0.60). The benefits of \textit{H pylori} eradication did not differ with study design, sex, or follow-up period.

Conclusions: In a systematic review and meta-analysis, we associated eradication of \textit{H pylori} infection with a reduced incidence of gastric cancer. The benefits of eradication vary with baseline gastric cancer incidence, but apply to all levels of baseline risk.

Key words: stomach, tumor, risk factor, antibiotic
INTRODUCTION

Gastric cancer is a major global health threat1-3 and is the third leading cause of cancer deaths worldwide causing an estimated more than 720,000 deaths per year globally.4 \textit{H pylori} is the most important etiologic factor for gastric cancer. \textit{H pylori} infects approximately 50\% of the global population,4 and it is estimated that 89\% of non-cardia gastric cancers, which accounts for 78\% of gastric cancer cases, are attributed to \textit{H pylori} infection.5, 6 \textit{H pylori} promotes gastric carcinogenesis through multiple mechanisms. \textit{H pylori} causes chronic gastric inflammation that may progress to the precancerous changes of atrophic gastritis and intestinal metaplasia. The risk of gastric cancer increases in relation to the severity and extent of those precancerous changes.7 Chronic \textit{H pylori} infection may also contribute to gastric mucosal genetic instability8 by reducing gastric acid secretion (hypochlorhydria), which can promote the growth of gastric microbiome that processes dietary components into carcinogens.7 Eradication of \textit{H pylori} may result in resolution of gastric inflammation, halt the progression of gastric mucosal damage, prevent further \textit{H pylori}-induced DNA damage, improve gastric acid secretion, and restore the microbiome toward normal.8 Since \textit{H pylori} can be eradicated with a short-course of antibiotic treatment,4 identifying and eradicating \textit{H pylori} infection could represent a viable strategy to reduce the enormous disease burden of gastric cancer.9
There has been increasing interest in mass *Helicobacter pylori* eradication to prevent gastric cancer. However, the benefit of eradication varies in relation to baseline gastric cancer risk, which varies widely across regions and populations, and the extent to which mass *Helicobacter pylori* eradication will affect gastric cancer incidence remains unclear. A recent meta-analysis combining six randomized controlled trials (RCTs) conducted in asymptomatic infected individuals reported that *Helicobacter pylori* eradication reduced the risk of gastric cancer in Asians, but the effect might not be generalizable to areas with a lower incidence rate of gastric cancer. However, that study used the risk (i.e., the number of gastric cancer cases at the end of follow-up divided by the number of individuals at baseline) for the intervention and comparison groups in each study to conduct meta-analysis and expressed the results with risk ratios; this approach does not take into account differences in follow-up duration and loss to follow-up. Controversies also exist regarding whether eradication could still provide protection against gastric cancer once atrophic gastritis and/or intestinal metaplasia develops. One RCT conducted in asymptomatic infected individuals showed that eradicating *Helicobacter pylori* reduced the incidence of gastric cancer only in subjects without premalignant gastric lesions but not in those with atrophic gastritis, suggesting there may be a point of no return beyond which irreversible molecular changes renders eradication ineffective or less effective in preventing progression to cancer. However, other
RCTs reported that *H pylori* eradication could reduce subsequent cancer incidence among individuals with atrophic gastritis12 and those with early gastric cancer13 who often harbor significant atrophic gastritis and/or intestinal metaplasia in the stomach, arguing against the existence of an absolute point of no return. Collectively, the magnitude of the benefit of *H pylori* eradication among diverse populations, who have different interaction between host genetic and bacterial virulent factors and thus harbor different levels of gastric cancer risk,14 remains unclear and the knowledge gap remains wide.

A better understanding of the size of the benefit to be expected following eradicating *H pylori* in populations with differing levels of gastric cancer risk is crucial in deciding whether and how mass eradication of *H pylori* should be implemented. We conducted a systematic review and meta-analysis of RCTs and cohort studies conducted in both asymptomatic *H pylori* carriers (i.e., primary prevention) and in individuals undergoing endoscopic resection of early gastric cancer (i.e., tertiary prevention) to investigate the association between *H pylori* eradication and gastric cancer incidence.

METHODS

Search strategy and selection criteria
We performed a systematic review in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and MOOSE (Meta-analysis of Observational Studies in Epidemiology) guidelines.15 Two investigators (THC and CKC) independently searched PubMed, Cochrane Library, and ClinicalTrials.gov and reviewed titles/abstracts for studies that examined eradication of \textit{H pylori} and subsequent risk of gastric cancer until the end of May 2015 without language or date restriction by using the terms of “\textit{Helicobacter pylori}” and “gastric cancer” (see Appendix for the search strategy). We manually searched bibliographies of included studies, related reviews, and abstracts presented at Digestive Disease Week in the USA for additional references. RCTs and cohort studies that compared individuals receiving \textit{H pylori} eradication with those not receiving eradication with respect to incident gastric cancer or metachronous recurrence after endoscopic resection of gastric cancer were eligible for meta-analysis. For studies that assessed other chemopreventive interventions in addition to \textit{H pylori} eradication, we used the arm that received \textit{H pylori} eradication alone and the arm that received placebo or no treatment for meta-analysis; arms that received other interventions with/without \textit{H pylori} eradication were excluded. Studies that did not include a comparison group (i.e., receiving placebo or no treatment) or evaluated patients who had undergone partial gastrectomy were excluded from
meta-analysis.

Data extraction and assessment for study quality

Two investigators (THC and CKC) independently reviewed full manuscripts of eligible studies and extracted information into an electronic database, including author, publication year, country where the study was conducted, study design, sample size, duration of follow-up, participants' characteristics, inclusion and exclusion criteria, diagnostic criteria for *H pylori* infection, the number of subjects in both intervention and comparison groups, the number of incident gastric cancers in both intervention and comparison groups, the modality used during endoscopic resection for early gastric cancer in the tertiary prevention trials, and the final outcomes. The same reviewers independently evaluated the risk of bias of included RCTs with the Cochrane risk of bias tool\(^\text{16}\) and assessed the quality of cohort studies with the Newcastle-Ottawa scale.\(^\text{17}\) Disagreement was resolved by joint review of the manuscript to reach consensus. When multiple articles for a single study were found, we used data from the latest publication.

Data synthesis and analysis

To account for differences in follow-up durations, we used incidence rate of gastric cancer for conducting meta-analysis. Random effects models were used for all meta-analyses to account for potential heterogeneity among studies. Two
approaches were undertaken for data synthesis. We first conducted random-effects meta-analysis proposed by DerSimonian and Laird with the use of the incidence rate ratio as the measure of effect size. Pre-planned subgroup meta-analyses were undertaken for studies of low, intermediate, and high baseline incidence of gastric cancer (defined by the tertiles of incidence rates in the groups not receiving eradication in the included studies). Subgroup analyses were also conducted with regard to study designs (i.e., RCT or cohort study) and clinical scenarios (i.e., asymptomatic *H pylori* carriers or patients with prior endoscopic resection of gastric cancer). We used meta-regression to evaluate whether incidence rate ratio differed by tertiles of baseline cancer incidence, study designs, and clinical scenarios. Potential small study bias was evaluated by funnel plots and by Egger’s test and Begg’s test. Heterogeneity was evaluated by I^2 and Cochran’s Q.

Second, as traditional meta-analysis can introduce bias when using continuity corrections for studies with no event in one of the study arms, we also conducted meta-analysis using generalized linear mixed models. We used random effect Poisson regression to model the effect of *H pylori* eradication on gastric cancer incidence with the number of cases as the outcome and the person-year as the offset in the model. The study-by-treatment interaction was included as the random effect in the regression model.
We further evaluated whether the effect of *H pylori* eradication on subsequent gastric cancer incidence was modified by the baseline gastric cancer incidence with the inclusion of interaction terms between the treatment and baseline gastric cancer incidence as fixed effects in the model; baseline gastric cancer incidence was treated as a continuous variable in the analysis because the incidence rate was apparently a continuous variable and categorizing a continuous variable might result in loss of information. This approach also enabled us to assess how the benefit of eradication changed linearly/nonlinearly with varying baseline gastric cancer incidence. If significant interaction between treatment and baseline gastric cancer incidence existed, the relation between incidence rate ratio and baseline cancer incidence was modeled using restricted cubic splines with three knots to explore potential non-linear relationship as well as the threshold value for a significant treatment effect. Likewise, we examined whether study design (*i.e.*, RCT vs. cohort), clinical scenario (*i.e.*, asymptomatic infected individuals vs. individuals after endoscopic resection of early gastric cancer), demographic characteristics (*i.e.*, age and gender), and follow-up duration would modify the effect of *H pylori* eradication on subsequent gastric cancer incidence. All *p* values were two-sided, and *p*<0.05 was considered to indicate statistical significance.
For sensitivity analysis, we first excluded studies that were published as abstracts. Second, we repeated the analysis with the exclusion of each study in turn to evaluate whether any study had excessive influence on the results of our meta-analysis.

All meta-analyses were conducted using the statistical software package Stata 14 (StataCorp, College Station, Texas, US).

RESULTS

Literature search

We identified 8,061 articles for review of title and abstract (Figure 1). After initial screening, full-text of potentially eligible articles was retrieved for detailed assessment. Twenty-four eligible studies including 22 full-text manuscripts and two abstracts were included for meta-analysis, with 715 incident gastric cancers among a total of 48,064 individuals/340,255 person-years. Study characteristics and outcomes are summarized in Table 1. Among included studies, 14 studies11, 25-37 were conducted in asymptomatic infected individuals and 10 studies13, 38-46 in individuals who had undergone endoscopic resection of early gastric cancers. Most studies were conducted in Asia; only two studies were conducted in other regions (Colombia and Finland).25, 36 The mean age at enrollment ranged from 42 to 63 years in all studies except a cohort study30 from Japan which focused on elderly patients (68 to 90 years).
Except two studies26, 28 reported in the abstract form, all included studies were considered as high or moderate quality (Appendix Table 1 and 2).

Traditional random-effects meta-analysis

Among all 24 studies, gastric cancer developed in 253 of 20,484 infected individuals who received eradication therapy, compared with 462 of 27,580 infected individuals who did not receive anti-\textit{H pylori} treatment. No significant small study bias was found (Begg’s test, \(p=0.17 \), and Egger’s test, \(p=0.18 \); Appendix Figure 1). Individuals receiving eradication had a lower incidence rate of gastric cancer than those without eradication; the pooled incidence rate ratio was 0.54 [95\% confidence interval (CI): 0.46 to 0.65] without significant heterogeneity \((I^2=0\%, \; p=0.67) \) (Figure 2).

The baseline gastric cancer incidence (\textit{i.e.}, incidence rate of gastric cancer in the group not receiving eradication) in each study varied widely from 34.3 to 10,256.4 per 100,000 person-years (Table 1). All studies of the intermediate and the highest tertiles of incidence were conducted in Asia. Of the 8 studies in the highest tertile of baseline incidence, one study assessed the preventive effect of eradication in individuals with gastric adenoma at baseline30, and others evaluated cancer incidence after endoscopic resection of early gastric cancer. As shown in Figure 2, in studies categorized into the intermediate (314.3 to 2,941.2 per 100,000 person-years)
and highest tertiles (2,970.0 to 10,256.4 per 100,000 person-years) of baseline gastric cancer incidence, individuals receiving anti-\textit{H pylori} treatment had a significantly lower incidence of gastric cancer as compared with those who did not receive treatment; the pooled incidence rate ratios were 0.49 (95% CI: 0.38-0.64) and 0.45 (95% CI: 0.32-0.64), respectively. The benefit of \textit{H pylori} eradication was non-significant in studies of the lowest tertile of gastric cancer incidence (34.3-253.6 per 100,000 person-years); the pooled incidence rate ratio was 0.80 (95% CI: 0.56-1.15).

Meta-regression analysis reaffirmed that the quantitative benefit of \textit{H pylori} eradication was greater in studies with higher baseline incidence rates of gastric cancer. Using studies of the lowest tertile of baseline incidence as reference, the pooled incidence rate ratios for eradication vs. non-eradication were reduced by 43.5% (95% CI: 4.3%-66.6%) in the highest tertile and by 38.4% (95% CI: 1.7%-61.4%) in the intermediate tertile, respectively.

Subgroup analyses according to different clinical scenarios (\textbf{Figure 3}) showed that the quantitative benefit of eradication seemed greater among individuals after endoscopic resection of gastric cancers (pooled incidence rate ratio: 0.46, 95% CI: 0.35-0.60) than among asymptomatic infected individuals (pooled incidence rate ratio: 0.62, 95% CI: 0.49-0.79), but the difference was not significant (p=0.12 by
meta-regression). The benefit of \textit{H pylori} eradication was comparable in RCTs and cohort studies, with pooled incidence rate ratios of 0.60 (95% CI: 0.44-0.81) and 0.52 (95% CI: 0.41-0.64), respectively (p=0.44 by meta-regression).

Mixed-effect Poisson regression meta-analysis

Results of the mixed-effect Poisson regression meta-analysis were similar with those of the traditional meta-analyses. Individuals who received \textit{H pylori} eradication had a lower incidence of gastric cancer than those who did not receive eradication therapy; the pooled incidence rate ratio was 0.53 (95% CI: 0.44-0.64) with little heterogeneity across studies (Table 2, model 1). Interaction analyses showed that baseline gastric cancer incidence significantly modified the benefit of eradication (model 2); the incidence rate ratio of gastric cancer decreased in a non-linear fashion with rising baseline incidence rate (p=0.018 in comparison with linear model) (Figure 4). The upper 95% confidence interval of incidence rate ratio for eradication decreased to below 1 when baseline gastric cancer incidence exceeded 150 per 100,000 person-years, and the incidence rate ratio continued to decrease with rising baseline incidence up to around 1,200 per 100,000 person-years and then stabilized. With exclusion of two studies25, 39 that did not provide information on age of participants, age also seemed to modestly modify the benefit of eradication (model 5, p-value interaction=0.023); the incidence rate ratio decreased by 3% (95% CI:
0%-5%) with every one year increase in the median age of participants. However, the interaction between age and eradication became non-significant (p-value interaction=0.25) when interaction between eradication and baseline incidence was also entered into the model; therefore, the impact of age on the effect of eradication might be due to the fact that studies with older patients tended to have higher baseline gastric cancer incidence. The benefit conferred by \(H \) pylori eradication did not differ by study design, clinical scenario, the percentage of male subjects, or follow-up duration (model 3, 4, 6 or 7). No material difference in results was noted in pre-specified sensitivity analyses, and no individual study had excessive influence on the summary estimate.

DISCUSSION

This meta-analysis is the first to evaluate the association between \(H \) pylori eradication and the incidence of gastric cancer across different levels of baseline gastric cancer risk and in different clinical scenarios. Our results support the concept that \(H \) pylori eradication effectively reduces the incidence of gastric cancer, and the magnitude of the protective effect is greater among individuals with higher baseline gastric cancer risk.
In the two previous meta-analyses that also evaluated the effect of *H pylori* eradication on gastric cancer prevention, the estimated relative risks were closer to 1 and had wider confidence intervals (0.65, 95% CI: 0.43-0.98\(^{47}\), and 0.66, 95% CI: 0.46-0.95\(^{10}\), respectively) compared with our estimates. Several reasons might explain why our meta-analysis showed greater benefit with better precision. The two previous meta-analyses summarised only five and six RCTs, respectively. Furthermore, those RCTs were conducted in asymptomatic carriers; most of those individuals likely belonged to the subgroup with the lowest gastric cancer risk among all *H pylori*-infected individuals.\(^{11, 25, 26, 28, 29}\) Therefore, the evidence base in previous meta-analyses was relatively limited. Secondly, previous meta-analyses used risk ratios to conduct meta-analysis, but risk ratios did not account for differences in follow-up durations between/within studies and thus could yield less precise pooled estimates. Our pooled rate ratio (0.63, 95% CI: 0.50-0.81) for asymptomatic carriers (baseline incidence from 68.7 to 314.3 per 100,000 person-year in the included RCTs) was similar to those from previous meta-analyses but with a narrower confidence interval. We were also able to identify that *H pylori* eradication provided even greater benefit among high-risk individuals. Taken together, our meta-analysis has a wider evidence base and greater statistical power with more precise estimates; therefore,
our results should better reflect the full spectrum of the potential benefit of implementing mass *H pylori* eradication for gastric cancer prevention.

The novel finding that the protective effect of *H pylori* eradication increased along with increasing gastric cancer incidence argues against an absolute point-of-no-return and has important implications. Atrophic gastritis and intestinal metaplasia from *H pylori*-induced chronic inflammation are the major histologic risk factors for gastric cancer,\(^7\),\(^9\),\(^{25}\) underscoring the need to prevent the occurrence of these precancerous conditions or reduce subsequent progression to cancer. Three previous studies\(^{11}\),\(^{36}\),\(^{38}\) suggested that eradicating *H pylori* might not reduce the risk of gastric cancer in individuals who has already developed atrophic gastritis and/or intestinal metaplasia, but those studies either used premalignant gastric lesions as surrogate endpoints\(^{36}\),\(^{37}\) or had only limited sample size in the subgroups of atrophic gastritis and/or intestinal metaplasia;\(^{11}\) therefore, those studies might have inadequate statistical power. One meta-analysis suggested that only subjects with non-atrophic gastritis and atrophic gastritis could benefit from *H pylori* treatment on gastric cancer risk but not subjects with intestinal metaplasia or dysplasia;\(^{48}\) however, that study was inevitable limited by the patchy distribution of intestinal metaplasia in stomach and the variation in biopsy methods across studies. Our meta-analysis shows that *H pylori* eradication is associated with a reduction of gastric cancer risk.
even among high-risk individuals, supporting that *H pylori* eradication is beneficial in individuals with atrophic gastritis and/or intestinal metaplasia. Other lines of evidence also support our finding. First, almost all gastric cancer patients have atrophic gastritis and/or intestinal metaplasia, and our meta-analysis showed that eradicating *H pylori* after endoscopic resection of early gastric cancer reduced the risk of metachronous cancer by 54%. Second, our population-based mass eradication program on Matsu Island of Taiwan found that *H pylori* eradication could reduce the severity or reverse the presence of atrophic gastritis among subjects with premalignant gastric lesions at baseline and reduced gastric cancer incidence by 25%, from 40.3 to 30.4 per 100,000 person-years.

The notable finding that *H pylori* eradication confers greater protection against gastric cancer for individuals with a higher baseline cancer risk might be attributed to the phenomenon that the risk of gastric cancer increases exponentially over time in those high-risk individuals. Therefore, the difference in subsequent cancer risk between eradicated and non-eradicated groups in an individual study is likely to be greater if eradication is provided when the cancer risk has increased to a higher level, and studies on high-risk individuals might have superior statistical power than studies on low-risk individuals. Indeed, even with relatively limited sample size and follow-up duration, the benefit of *H pylori* eradication was evident in the included
studies that assessed individuals undergoing endoscopic resection of early gastric cancer, who belonged to the subset of individuals at the highest risk of gastric cancer.51

Without effective preventive measures, the current high incidence of gastric cancer is projected to remain stable or even increase by 2030.4 The International Agency for Research on Cancer has indicated the urgent need for effective preventive measures and for a critical assessment of \textit{H pylori} eradication as a preventive strategy.52 Our results support that mass \textit{H pylori} screening and eradication is a viable preventive strategy and should be implemented in high-risk populations/areas, especially in those with an incidence rate higher than 150/100,000 person-years. While we found that the protective effect of \textit{H pylori} eradication is less conspicuous in low-incidence individuals, this finding does not argue against implementing \textit{H pylori} eradication for gastric cancer prevention in low-incidence populations. Overall, our results clearly show that eradication protects against gastric cancer; the 95\% confidence interval of the pooled incidence rate ratio crossing one when incidence rate is below 150/100,000 person-years reflects limited statistical power due to smaller effect size and relative paucity of evidence from low-incidence areas. Furthermore, \textit{H pylori} infection can be reliably identified with non-invasive methods and eradicated with an overall success rate above 90\%53, 54 through selecting a regimen with or without
clarithromycin according to the 15%-20% threshold of macrolide resistance in a specific population. In light of the unequivocal benefit of *H pylori* eradication, future long-term placebo controlled trials for high-risk population would be unethical. How *H pylori* eradication should be implemented in low-incidence populations/areas should be further evaluated. For instance, in areas with intrinsically lower rates of gastric cancer (e.g., much of Europe and North America), there are high-risk populations (such as immigrants from high-risk areas) and thus eradication may need to be focused; simulation studies have shown that such a strategy would be cost-effective in the long run.55

Our meta-analysis addresses the limitations of existing research and has several strengths. Most of previous studies were underpowered; it is estimated that even in a high-risk population with an annual incidence rate of 200 per 100,000 person-years, 17,625 individuals per group with a follow-up duration of 10 years are need for an RCT to demonstrate a 50% reduction in gastric cancer incidence with eradication against placebo.49 Our meta-analysis evaluated the association between *H pylori* eradication and the incidence of gastric cancer across diverse populations/scenarios with different levels of baseline gastric cancer risk, comprising 20,484 treated and 27,580 untreated individuals with a total follow-up of 340,255 person-years. The agreement between results from different meta-analytic methods supports that the
results are robust. Our results provide a more comprehensive and precise estimate of the potential benefit of implementing *H pylori* eradication among populations at different levels of gastric cancer risk and should have better generalizability.

Our study also has some limitations. First, all but two of the included studies were conducted in East Asia; therefore, whether the results can be extrapolated to other high-risk areas remains unclear. Second, the presence and severity of atrophic gastritis and intestinal metaplasia were not uniformly assessed and reported in the included studies (*i.e.*, they lacked risk stratification: Appendix Table 3). Therefore, it remains speculative to translate the magnitude of benefit for subjects with early gastric cancer to those who have precancerous changes in their gastric mucosae. Also, we could not further clarify how the extent and severity of those precancerous conditions modifies the preventive effect of *H pylori* eradication. However, accurate determination of the extent and severity of atrophic gastritis and intestinal metaplasia requires endoscopic examination and histological assessment; routine ascertainment of this information before eradication is neither feasible nor necessary for most *H pylori*-infected individuals. Third, the outcome assessment may be different between primary and tertiary prevention studies; the former may obtain the information from cancer registries (most cancers had clinical symptom) while the latter may mainly from endoscopic surveillance (most cancers were asymptomatic). However, gastric
cancer was characteristic for its rapid progression with a preclinical detectable phase of only about 1.4 years. Without treatment, gastric cancers early in stage will eventually progress to the symptomatic stage in a short time period such that the difference between these two approaches would be minimal. This interpretation was also supported by our subgroup analysis that showed no significant difference between the different clinical scenarios. Lastly, this meta-analysis was conducted using summary statistics rather than individual data. The modest interaction between age and *H pylori* eradication may be influenced by collinearity between age and baseline gastric cancer incidence. However, there might be some covariates that could influence the effect of eradication, but were not reported and thus could not be adjusted. Access to and examination of data from individual participants should allow further identification and control of potential confounding factors.

In conclusion, our meta-analysis confirmed that *H pylori* eradication is associated with a reduction of the incidence of gastric cancer. Although the level of benefit varies, it presents across all levels of baseline gastric cancer risk. *H pylori* eradication may be the most viable strategy for gastric cancer prevention.
REFERENCES

Helicobacter pylori eradication on precancerous gastric lesions. *Gut.*

pepsinogen levels. *Int J Cancer.* 2009;**125**:2697-703.

Author names in bold designate shared co-first authorship.

FIGURE LEGENDS

Figure 1. Flow chart of literature search and selection

Figure 2. Summary incidence rate ratio of gastric cancer associated with *H pylori* eradication by traditional random-effects meta-analysis, stratified by baseline incidence of gastric cancer

Figure 3. Summary incidence rate ratio of gastric cancer associated with *H pylori* eradication by traditional random-effects meta-analysis, stratified by clinical scenario (asymptomatic infected individuals vs. individuals after endoscopic resection of early gastric cancer)

Figure 4. Non-linear relation between incidence rate ratio of gastric cancer associated with *H pylori* eradication and baseline gastric cancer incidence. IRR, incidence rate ratio; CI, 95% confidence interval. Circles indicate incidence rate ratios in individual studies; size of bubble is proportional to precision (inverse of variance) of incidence rate ratio. Note that the upper bound of 95% CI starts to decrease less than 1 and becomes statistically significant when the baseline
incidence exceeds the threshold value of approximately 150 per 100,000 person-years.
TABLES

Table 1. Characteristics of studies evaluating the effect of *H pylori* eradication on the primary and tertiary prevention of gastric cancer

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Country</th>
<th>Mean age (year)</th>
<th>Male (%)</th>
<th>Mean follow-up (month)</th>
<th>Treatment group</th>
<th>Comparison group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GC, n</td>
<td>GC incidence, 100,000 PY</td>
</tr>
<tr>
<td>Studies on asymptomatic infected individuals (primary prevention)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total, n</td>
<td></td>
</tr>
<tr>
<td>Correa et al, 2000</td>
<td>Colombia</td>
<td>51.1</td>
<td>46.0</td>
<td>72</td>
<td>491 3 101.8</td>
<td></td>
</tr>
<tr>
<td>Wong et al, 2004</td>
<td>China</td>
<td>42.2</td>
<td>54.0</td>
<td>90</td>
<td>817 7 114.2</td>
<td></td>
</tr>
<tr>
<td>Saito et al, 2005,</td>
<td>Japan</td>
<td>NA</td>
<td>NA</td>
<td>48</td>
<td>379 2 131.9</td>
<td></td>
</tr>
<tr>
<td>You et al, 2006</td>
<td>China</td>
<td>50.7</td>
<td>51.4</td>
<td>176</td>
<td>1130 34 205.1</td>
<td></td>
</tr>
<tr>
<td>Zhou et al, 2008,</td>
<td>China</td>
<td>53.4</td>
<td>47.8</td>
<td>120</td>
<td>276 2 72.5</td>
<td></td>
</tr>
<tr>
<td>Wong et al, 2012</td>
<td>China</td>
<td>52.9</td>
<td>46.1</td>
<td>60</td>
<td>255 3 235.3</td>
<td></td>
</tr>
<tr>
<td>Cohort study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saito et al, 2000</td>
<td>Japan</td>
<td>79.2</td>
<td>54.7</td>
<td>24</td>
<td>32 0 0</td>
<td></td>
</tr>
<tr>
<td>Take et al, 2007</td>
<td>Japan</td>
<td>50</td>
<td>88.7</td>
<td>47</td>
<td>953 9 241.1</td>
<td></td>
</tr>
<tr>
<td>Takenaka et al, 2007</td>
<td>Japan</td>
<td>53.6</td>
<td>71.3</td>
<td>38</td>
<td>1519 6 124.7</td>
<td></td>
</tr>
<tr>
<td>Ogura et al, 2008</td>
<td>Japan</td>
<td>62.9</td>
<td>56.5</td>
<td>38</td>
<td>404 6 469.0</td>
<td></td>
</tr>
<tr>
<td>Mabe et al, 2009</td>
<td>Japan</td>
<td>52.9</td>
<td>71.7</td>
<td>67</td>
<td>3781 47 222.6</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Location</td>
<td>Five-Year Survival (%)</td>
<td>Ten-Year Survival (%)</td>
<td>Five-Year Survival PY</td>
<td>Ten-Year Survival PY</td>
<td>Five-Year PY</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Yanaoka et al, 2009</td>
<td>Japan</td>
<td>49.8</td>
<td>99.9</td>
<td>112</td>
<td>473</td>
<td>5</td>
</tr>
<tr>
<td>Kosunen et al, 2011</td>
<td>Finland</td>
<td>55.3</td>
<td>50.0</td>
<td>121</td>
<td>3650</td>
<td>11</td>
</tr>
<tr>
<td>Lee et al, 2013</td>
<td>Taiwan</td>
<td>49.2</td>
<td>45.8</td>
<td>60</td>
<td>4121</td>
<td>15</td>
</tr>
</tbody>
</table>

Studies on individuals after endoscopic resection of early gastric cancer (tertiary prevention)

<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>Five-Year Survival (%)</th>
<th>Ten-Year Survival (%)</th>
<th>Five-Year Survival PY</th>
<th>Ten-Year Survival PY</th>
<th>Five-Year PY</th>
<th>Ten-Year PY</th>
<th>Five-Year Incidence</th>
<th>Ten-Year Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fukase et al, 2008</td>
<td>Japan</td>
<td>68</td>
<td>76.5</td>
<td>36</td>
<td>272</td>
<td>9</td>
<td>1102.9</td>
<td>272</td>
<td>24</td>
</tr>
<tr>
<td>Choi et al, 2014</td>
<td>Korea</td>
<td>60</td>
<td>67.7</td>
<td>36</td>
<td>444</td>
<td>10</td>
<td>750.8</td>
<td>457</td>
<td>17</td>
</tr>
</tbody>
</table>

Cohort study

<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>Five-Year Survival (%)</th>
<th>Ten-Year Survival (%)</th>
<th>Five-Year Survival PY</th>
<th>Ten-Year Survival PY</th>
<th>Five-Year PY</th>
<th>Ten-Year PY</th>
<th>Five-Year Incidence</th>
<th>Ten-Year Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uemura et al, 1997</td>
<td>Japan</td>
<td>69</td>
<td>72</td>
<td>36</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>67</td>
<td>6</td>
</tr>
<tr>
<td>Nakagawa et al, 2006</td>
<td>Japan</td>
<td>NA</td>
<td>NA</td>
<td>24</td>
<td>356</td>
<td>8</td>
<td>1123.6</td>
<td>2469</td>
<td>129</td>
</tr>
<tr>
<td>Shiotani et al, 2008</td>
<td>Japan</td>
<td>66</td>
<td>84</td>
<td>33</td>
<td>80</td>
<td>9</td>
<td>4090.9</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Maehata et al, 2012</td>
<td>Japan</td>
<td>69</td>
<td>72.3</td>
<td>36</td>
<td>177</td>
<td>15</td>
<td>2824.9</td>
<td>91</td>
<td>13</td>
</tr>
<tr>
<td>Seo et al, 2013</td>
<td>Korea</td>
<td>62</td>
<td>67.6</td>
<td>27</td>
<td>61</td>
<td>6</td>
<td>4371.6</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Kwon et al, 2014</td>
<td>Korea</td>
<td>61</td>
<td>67.1</td>
<td>40</td>
<td>214</td>
<td>10</td>
<td>1401.9</td>
<td>69</td>
<td>10</td>
</tr>
<tr>
<td>Bae et al, 2014</td>
<td>Korea</td>
<td>63</td>
<td>78.5</td>
<td>56</td>
<td>485</td>
<td>34</td>
<td>1470.0</td>
<td>182</td>
<td>24</td>
</tr>
<tr>
<td>Kim et al, 2014</td>
<td>Korea</td>
<td>64</td>
<td>74.3</td>
<td>58</td>
<td>49</td>
<td>2</td>
<td>844.5</td>
<td>107</td>
<td>16</td>
</tr>
</tbody>
</table>

Abbreviation: GC=gastric cancer; PY=person year; NA=not available
Table 2. Effects of *H pylori* eradication and other variables on the incidence rate of gastric cancer

<table>
<thead>
<tr>
<th>Variables included into models</th>
<th>Eradication</th>
<th>Eradication × baseline risk</th>
<th>Eradication × cohort study</th>
<th>Eradication × tertiary prevention</th>
<th>Eradication × age</th>
<th>Eradication × gender</th>
<th>Eradication × follow-up duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence rate ratio</td>
<td>0.53 (0.44-0.64)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence rate ratio</td>
<td>0.63 (0.50-0.81)</td>
<td></td>
<td>0.037</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction p value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence rate ratio</td>
<td>0.60 (0.44-0.80)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.340</td>
</tr>
<tr>
<td>Interaction p value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence rate ratio</td>
<td>0.61 (0.48-0.78)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.097</td>
</tr>
<tr>
<td>Interaction p value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence rate ratio</td>
<td>0.52 (0.43-0.63)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.023</td>
</tr>
<tr>
<td>Interaction p value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence rate ratio</td>
<td>0.53 (0.44-0.64)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction p value</td>
<td>0.103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence rate ratio</td>
<td>0.51 (0.42-0.61)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interaction p value</td>
<td>0.064</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Study-specific effects are omitted from the table.
- Randomized controlled trial as reference.
- Primary prevention as reference.
- Median age in individual studies (Saito et al26 and Nakagawa et al40 excluded due to lack of information).
- Percentage of male subjects in individual studies (Saito et al26 and Nakagawa et al40 excluded due to lack of information).
- Median follow-up duration in individual studies.
8061 potentially relevant articles identified
 7783 PubMed
 217 The Cochrane Library
 58 ClinicalTrials.gov
 3 Digestive Disease Week

8032 articles excluded after screening of title and abstract

29 full-text articles extracted for detailed assessment

5 duplicated articles excluded

24 articles included in meta-analysis
 14 primary prevention of gastric cancer
 10 tertiary prevention of gastric cancer
<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Incidence rate ratio (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowest tertile of incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosunen et al, 2011</td>
<td>0.85 (0.43, 1.66)</td>
<td>7.10</td>
</tr>
<tr>
<td>Correa et al, 2000</td>
<td>1.48 (0.25, 8.87)</td>
<td>1.00</td>
</tr>
<tr>
<td>Wong et al, 2012</td>
<td>3.04 (0.32, 29.18)</td>
<td>0.63</td>
</tr>
<tr>
<td>Lee et al, 2013</td>
<td>0.94 (0.46, 1.90)</td>
<td>6.48</td>
</tr>
<tr>
<td>Yamaoka et al, 2009</td>
<td>0.75 (0.30, 1.87)</td>
<td>3.84</td>
</tr>
<tr>
<td>Wong et al, 2004</td>
<td>0.63 (0.25, 1.63)</td>
<td>3.58</td>
</tr>
<tr>
<td>Saito et al, 2005</td>
<td>0.55 (0.09, 3.29)</td>
<td>1.00</td>
</tr>
<tr>
<td>Zhou et al, 2008</td>
<td>0.26 (0.06, 1.38)</td>
<td>1.30</td>
</tr>
<tr>
<td>Subtotal (I-squared = 0.0%, p = 0.770)</td>
<td>0.80 (0.56, 1.15)</td>
<td>24.93</td>
</tr>
<tr>
<td>Intermediate tertile of incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>You et al, 2008</td>
<td>0.65 (0.42, 1.01)</td>
<td>17.20</td>
</tr>
<tr>
<td>Mabe et al, 2009</td>
<td>0.49 (0.24, 0.99)</td>
<td>6.32</td>
</tr>
<tr>
<td>Takenaka et al, 2007</td>
<td>0.23 (0.07, 0.75)</td>
<td>2.28</td>
</tr>
<tr>
<td>Takei et al, 2007</td>
<td>0.42 (0.13, 1.36)</td>
<td>2.32</td>
</tr>
<tr>
<td>Choi et al, 2014</td>
<td>0.61 (0.28, 1.32)</td>
<td>5.27</td>
</tr>
<tr>
<td>Ogura et al, 2008</td>
<td>0.35 (0.13, 0.91)</td>
<td>3.44</td>
</tr>
<tr>
<td>Nakagawa et al, 2006</td>
<td>0.43 (0.21, 0.88)</td>
<td>6.30</td>
</tr>
<tr>
<td>Fukase et al, 2008</td>
<td>0.36 (0.17, 0.71)</td>
<td>5.49</td>
</tr>
<tr>
<td>Subtotal (I-squared = 0.0%, p = 0.694)</td>
<td>0.49 (0.38, 0.64)</td>
<td>48.61</td>
</tr>
<tr>
<td>Highest tertile of incidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bae et al, 2014</td>
<td>0.49 (0.29, 0.83)</td>
<td>11.77</td>
</tr>
<tr>
<td>Uemura et al, 1997</td>
<td>0.09 (0.00, 1.54)</td>
<td>0.30</td>
</tr>
<tr>
<td>Kim et al, 2014</td>
<td>0.27 (0.06, 1.19)</td>
<td>1.49</td>
</tr>
<tr>
<td>Shiota et al, 2008</td>
<td>1.23 (0.16, 9.69)</td>
<td>0.75</td>
</tr>
<tr>
<td>Kwon et al, 2014</td>
<td>0.32 (0.13, 0.78)</td>
<td>4.18</td>
</tr>
<tr>
<td>Maehata et al, 2012</td>
<td>0.59 (0.28, 1.25)</td>
<td>5.83</td>
</tr>
<tr>
<td>Saito et al, 2000</td>
<td>0.13 (0.01, 2.36)</td>
<td>0.37</td>
</tr>
<tr>
<td>Seo et al, 2013</td>
<td>0.42 (0.11, 1.59)</td>
<td>1.67</td>
</tr>
<tr>
<td>Subtotal (I-squared = 0.0%, p = 0.713)</td>
<td>0.45 (0.32, 0.64)</td>
<td>26.46</td>
</tr>
<tr>
<td>Overall (I-squared = 0.0%, p = 0.673)</td>
<td>0.54 (0.46, 0.65)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis.
<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Incidence rate ratio (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic infected individuals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosunen et al, 2011</td>
<td>0.85 (0.43, 1.66)</td>
<td>7.10</td>
</tr>
<tr>
<td>Correa et al, 2000</td>
<td>1.48 (0.25, 8.87)</td>
<td>1.00</td>
</tr>
<tr>
<td>Wong et al, 2012</td>
<td>3.04 (0.32, 29.18)</td>
<td>0.63</td>
</tr>
<tr>
<td>Lee et al, 2013</td>
<td>0.94 (0.46, 1.90)</td>
<td>6.48</td>
</tr>
<tr>
<td>Yamaoka et al, 2009</td>
<td>0.75 (0.30, 1.87)</td>
<td>3.84</td>
</tr>
<tr>
<td>Wong et al, 2004</td>
<td>0.63 (0.25, 1.63)</td>
<td>3.58</td>
</tr>
<tr>
<td>Saito et al, 2005</td>
<td>0.56 (0.09, 3.29)</td>
<td>1.00</td>
</tr>
<tr>
<td>Zhou et al, 2008</td>
<td>0.29 (0.06, 1.38)</td>
<td>1.30</td>
</tr>
<tr>
<td>You et al, 2006</td>
<td>0.65 (0.42, 1.01)</td>
<td>17.20</td>
</tr>
<tr>
<td>Mabe et al, 2009</td>
<td>0.49 (0.24, 0.99)</td>
<td>6.32</td>
</tr>
<tr>
<td>Takenaka et al, 2007</td>
<td>0.23 (0.07, 0.75)</td>
<td>2.28</td>
</tr>
<tr>
<td>Take et al, 2007</td>
<td>0.42 (0.13, 1.36)</td>
<td>2.32</td>
</tr>
<tr>
<td>Ogura et al, 2008</td>
<td>0.35 (0.13, 0.91)</td>
<td>3.44</td>
</tr>
<tr>
<td>Saito et al, 2000</td>
<td>0.13 (0.01, 2.36)</td>
<td>0.37</td>
</tr>
<tr>
<td>Subtotal (I-squared = 0.0%, p = 0.508)</td>
<td>0.62 (0.49, 0.79)</td>
<td>56.86</td>
</tr>
</tbody>
</table>

Individuals after endoscopic resection of early gastric cancer		
Choi et al, 2014	0.61 (0.28, 1.32)	5.27
Nakagawa et al, 2006	0.43 (0.21, 0.88)	6.30
Fukae et al, 2008	0.38 (0.17, 0.81)	5.48
Bae et al, 2014	0.49 (0.29, 0.83)	11.77
Uemura et al, 1997	0.09 (0.00, 1.54)	0.39
Kim et al, 2014	0.27 (0.06, 1.19)	1.49
Shiotani et al, 2008	1.23 (0.16, 9.69)	0.75
Kwon et al, 2014	0.32 (0.13, 0.76)	4.18
Maehata et al, 2012	0.59 (0.28, 1.25)	5.83
Seo et al, 2013	0.42 (0.11, 1.69)	1.67
Subtotal (I-squared = 0.0%, p = 0.867)	0.46 (0.35, 0.60)	43.14
Overall (I-squared = 0.0%, p = 0.673)	0.54 (0.46, 0.65)	100.00

NOTE: Weights are from random effects analysis.
APPENDIX

This appendix has been provided by the authors to give readers additional information about their work.

Supplement to: Lee YC, Chiang TH, Chou CK, et al. Association Between Helicobacter pylori Eradication and Gastric Cancer Incidence: a Systematic Review and Meta-analysis
Search strategy

PubMed:
("helicobacter pylori"[MeSH Terms] OR ("helicobacter"[All Fields] AND "pylori"[All Fields]) OR "helicobacter pylori"[All Fields]) AND ("stomach neoplasms"[MeSH Terms] OR ("stomach"[All Fields] AND "neoplasms"[All Fields]) OR "stomach neoplasms"[All Fields] OR ("gastric"[All Fields] AND "cancer"[All Fields]) OR "gastric cancer"[All Fields])

Cochrane Library:
Category: helicobacter pylori gastric cancer
(http://onlinelibrary.wiley.com/cochranelibrary/search)

ClinicalTrials.gov:
Category: helicobacter pylori gastric cancer

Digestive Disease Week:
Category: helicobacter pylori gastric cancer
(http://www.ddw.org/search?query=helicobacter+pylori+gastric+cancer)

Appendix Figure 1. The funnel plot of all 24 eligible studies does not show asymmetry.
Statistical analysis confirmed no evidence of publication bias with Begg’s test (p=0.17) and Egger’s test (p=0.18).
Appendix Table 1. Cochrane risk of bias tool assessment for RCTs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Correa et al, 2000</td>
<td>■</td>
<td>■</td>
<td>□</td>
<td>□</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Wong et al, 2004</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Saito et al, 2005,</td>
<td>NA</td>
<td>NA</td>
<td>■</td>
<td>NA</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>You et al, 2006</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Zhou et al, 2008,</td>
<td>NA</td>
<td>NA</td>
<td>■</td>
<td>NA</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Wong et al, 2012</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Fukase et al, 2008</td>
<td>■</td>
<td>NA</td>
<td>□</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>Choi et al, 2014</td>
<td>■</td>
<td>NA</td>
<td>□</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
</tbody>
</table>

□ = quality measure not fulfilled; ■ = quality measure fulfilled; NA = not available.
Appendix Table 2. Newcastle-Ottawa scale for cohort study quality

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Representative of the exposed cohort</th>
<th>Selection of the non-exposed cohort</th>
<th>Ascertainment of exposure</th>
<th>Demonstration that outcome in interest was not present at start of the study</th>
<th>Comparability of cohorts on the basis of the design or analysis</th>
<th>Assessment of outcome</th>
<th>Was follow-up long enough for outcomes to occur</th>
<th>Adequacy of follow-up of cohorts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saito et al, 2000</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Take et al, 2007</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Takenaka et al, 2007</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Ogura et al, 2008</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Mabe et al, 2009</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Yanaoka et al, 2009</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Kosunen et al, 2011</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Lee et al, 2013</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Uemura et al, 1997</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Nakagawa et al, 2006</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Shiotani et al, 2008</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Maehata et al, 2012</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Seo et al, 2013</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Kwon et al, 2014</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
</tbody>
</table>
Appendix Table 3. Additional study information on the primary and tertiary prevention of gastric cancer

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Location</th>
<th>Baseline gastric mucosal status, proportion of atrophic gastritis, %</th>
<th>Baseline gastric mucosal status, proportion of intestinal metaplasia, %</th>
<th>Baseline gastric mucosal status, proportion of dysplasia, %</th>
<th>Risk ratio of gastric cancer (95% CI)</th>
<th>Method to confirm H. pylori</th>
<th>Eradication regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies on asymptomatic infected individuals (primary prevention)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correa et al, 2000</td>
<td>Colombia</td>
<td>22.8</td>
<td>67.9</td>
<td>9.2</td>
<td>1.48 (0.25-8.83)</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>Wong et al, 2004</td>
<td>China</td>
<td>7.9</td>
<td>28.7</td>
<td>0.6</td>
<td>0.63 (0.25-1.63)</td>
<td>A+D</td>
<td>T</td>
</tr>
<tr>
<td>Saito et al, 2005,</td>
<td>Japan</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.55 (0.09-3.27)</td>
<td>NA</td>
<td>T</td>
</tr>
<tr>
<td>You et al, 2006</td>
<td>China</td>
<td>44.8</td>
<td>33.0</td>
<td>20.1</td>
<td>0.65 (0.43-1.00)</td>
<td>D</td>
<td>O</td>
</tr>
<tr>
<td>Zhou et al, 2008,</td>
<td>China</td>
<td>49.1</td>
<td>49.5</td>
<td>0</td>
<td>0.29 (0.06-1.36)</td>
<td>A+D</td>
<td>T</td>
</tr>
<tr>
<td>Wong et al, 2012</td>
<td>China</td>
<td>22.2</td>
<td>23.4</td>
<td>54.4</td>
<td>3.04 (0.32-28.99)</td>
<td>C</td>
<td>T</td>
</tr>
<tr>
<td>Cohort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saito et al, 2000</td>
<td>Japan</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.11 (0.01-1.98)</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>Take et al, 2007</td>
<td>Japan</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0.42 (0.13-1.35)</td>
<td>E</td>
<td>T or O</td>
</tr>
<tr>
<td>Takenaka et al, 2007</td>
<td>Japan</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.23 (0.07-0.74)</td>
<td>B+C+D+E and/or A</td>
<td>T or O</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Age/Duration</td>
<td>Follow-up</td>
<td>Positive</td>
<td>RCT/Cohort</td>
<td>Histology</td>
<td>Serology</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Ogura et al, 2008</td>
<td>Japan</td>
<td>NA</td>
<td>NA</td>
<td>0.35</td>
<td>E or two of A, B, C</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Mabe et al, 2009</td>
<td>Japan</td>
<td>NA</td>
<td>NA</td>
<td>0.49</td>
<td>D</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Yamaoka et al, 2009</td>
<td>Japan</td>
<td>NA</td>
<td>NA</td>
<td>0.70</td>
<td>B</td>
<td>T or O</td>
<td></td>
</tr>
<tr>
<td>Kosunen et al, 2011</td>
<td>Finland</td>
<td>NA</td>
<td>NA</td>
<td>0.95</td>
<td>B</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Lee et al, 2013</td>
<td>Taiwan</td>
<td>59.9</td>
<td>31.7</td>
<td>0.94</td>
<td>C</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>

Studies on individuals after endoscopic resection of early gastric cancer (tertiary prevention)

RCT

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Age/Duration</th>
<th>Follow-up</th>
<th>Positive</th>
<th>RCT/Cohort</th>
<th>Histology</th>
<th>Serology</th>
<th>Carbon-urea breath test</th>
<th>Rapid urease test</th>
<th>Bacterial culture</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fukase et al, 2008</td>
<td>Japan</td>
<td>99.6</td>
<td>66.7</td>
<td>0.38</td>
<td>A or D</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choi et al, 2014</td>
<td>Korea</td>
<td>75.5</td>
<td>90.7</td>
<td>0.61</td>
<td>A or D</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cohort

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Age/Duration</th>
<th>Follow-up</th>
<th>Positive</th>
<th>RCT/Cohort</th>
<th>Histology</th>
<th>Serology</th>
<th>Carbon-urea breath test</th>
<th>Rapid urease test</th>
<th>Bacterial culture</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uemura et al, 1997</td>
<td>Japan</td>
<td>NA</td>
<td>NA</td>
<td>0.08</td>
<td>B</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nakagawa et al, 2006</td>
<td>Japan</td>
<td>NA</td>
<td>NA</td>
<td>0.43</td>
<td>NA</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shiotani et al, 2008</td>
<td>Japan</td>
<td>NA</td>
<td>NA</td>
<td>1.24</td>
<td>A+B</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maehata et al, 2012</td>
<td>Japan</td>
<td>4.2</td>
<td>NA</td>
<td>0.59</td>
<td>One of A, B, C, D</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seo et al, 2013</td>
<td>Korea</td>
<td>NA</td>
<td>NA</td>
<td>0.43</td>
<td>A+C+D</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kwon et al, 2014</td>
<td>Korea</td>
<td>97.5</td>
<td>NA</td>
<td>0.32</td>
<td>Two of A, B, D</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bae et al, 2014</td>
<td>Korea</td>
<td>NA</td>
<td>98</td>
<td>0.53</td>
<td>One of A, C, D</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim et al, 2014</td>
<td>Korea</td>
<td>NA</td>
<td>NA</td>
<td>0.27</td>
<td>Two of A, B, D</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: RCT=randomized controlled trial; NA=not available; CI=confidence interval; A=histology; B=serology; C=\(^{13}\)Carbon-urea breath test; D=rapid urease test; E=bacterial culture; T=triple therapy; O=dual therapy