

Early Glycemic Control and Magnitude of HbA_{1c} Reduction Predict Cardiovascular Events and Mortality: Population-Based Cohort Study of 24,752 Metformin Initiators

Lisbeth M. Baggesen,¹ Søren P. Johnsen,¹ Lars Pedersen,¹ Helene Nørrelund,¹ Esben S. Buhl,² Christiane L. Haase,² and Reimar W. Thomsen¹

Diabetes Care 2017;40:800-807 | https://doi.org/10.2337/dc16-2271

OBJECTIVE

We investigated the association of early achieved HbA_{1c} level and magnitude of HbA_{1c} reduction with subsequent risk of cardiovascular events or death in patients with type 2 diabetes who initiate metformin.

RESEARCH DESIGN AND METHODS

This was a population-based cohort study including all metformin initiators with HbA_{1c} tests in Northern Denmark, 2000–2012. Six months after metformin initiation, we classified patients by HbA_{1c} achieved (<6.5% or higher) and by magnitude of HbA_{1c} change from the pretreatment baseline. We used Cox regression to examine subsequent rates of acute myocardial infarction, stroke, or death, controlling for baseline HbA_{1c} and other confounding factors.

RESULTS

We included 24,752 metformin initiators (median age 62.5 years, 55% males) with a median follow-up of 2.6 years. The risk of a combined outcome event gradually increased with rising levels of HbA_{1c} achieved compared with a target HbA_{1c} of <6.5%: adjusted hazard ratio (HR) 1.18 (95% CI 1.07–1.30) for 6.5–6.99%, HR 1.23 (1.09–1.40) for 7.0–7.49%, HR 1.34 (1.14–1.57) for 7.5–7.99%, and HR 1.59 (1.37–1.84) for ≥8%. Results were consistent for individual outcome events and robust by age-group and other patient characteristics. A large absolute HbA_{1c} reduction from baseline also predicted outcome: adjusted HR 0.80 (0.65–0.97) for Δ = -4, HR 0.98 (0.80–1.20) for Δ = -3, HR 0.92 (0.78–1.08) for Δ = -2, and HR 0.99 (0.89–1.10) for $\Delta = -1$ compared with no HbA_{1c} change ($\Delta = 0$).

CONCLUSIONS

A large initial HbA_{1c} reduction and achievement of low HbA_{1c} levels within 6 months after metformin initiation are associated with a lower risk of cardiovascular events and death in patients with type 2 diabetes.

¹Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark

²Novo Nordisk Scandinavia AB, Ørestad, Copenhagen, Denmark

Corresponding author: Reimar W. Thomsen, rwt@clin.au.dk.

Received 24 October 2016 and accepted 6 March 2017.

This article contains Supplementary Data online at http://care.diabetesjournals.org/lookup/ suppl/doi:10.2337/dc16-2271/-/DC1.

This article is featured in a podcast available at http://www.diabetesjournals.org/content/ diabetes-core-update-podcasts.

E.S.B. is currently in general practice in Hov, Municipality Søndre Land, Norway.

© 2017 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals .ora/content/license.

Lowering glycated hemoglobin (HbA_{1c}) levels to <7% (<53 mmol/mol) in most adults with type 2 diabetes has been a recommended target in treatment guidelines for more than a decade (1-4) because of the documented effect in reducing microvascular complications (5). In contrast, it remains debated whether even tighter glucose control (such as HbA_{1c} <6.5%) may be more beneficial or harmful (6) and what the true effect of tight early glucose control is on subsequent cardiovascular disease (7). Although the large clinical randomized controlled trials have failed to show a clear beneficial effect of early intensive glycemic control on cardiovascular events in type 2 diabetes (5), long-term follow-up studies from the UK Prospective Diabetes Study (UKPDS) (8) and Veterans study (9) have suggested a beneficial cardiovascular effect, termed "metabolic memory" or "legacy effect." (10) In observational research, most studies, but not all, suggest that having a low glycemic level measured at some point of time is associated with fewer cardiovascular events and mortality in type 2 diabetes (11-18). Some studies found a linear relationship between successively lower glycemic levels and fewer cardiovascular events (11,12,18), whereas others reported a J- or U-shaped curve (14–16). Comparison of these studies is hampered by inclusion of case patients with prevalent diabetes with different time of diabetes duration and by different ways of measuring glycemic control. Only two of the observational studies on cardiovascular risk began at the diagnosis of diabetes (15,18). Olsson et al. (18) found an overall increased risk of acute myocardial infarction with a timeupdated HbA_{1c} <6.0% (42 mmol/mol) compared with 6-7%, whereas Ostgren et al. (15) reported the lowest cardiovascular risk was seen with an early achieved HbA_{1c} level of 6.8% (51 mmol/mol). Whether the magnitude of early HbA_{1c} reduction predicts subsequent prognosis remains unknown.

Because current guidelines emphasize the importance of tight glycemic control early after diabetes diagnosis, before complications have occurred (4), further research is warranted on the association of early glycemic control with cardiovascular events, taking into account HbA_{1c} at the initiation of metformin use. Thus, using real-life data from Danish medical registries, we investigated the association of achieved HbA_{1c} level and magnitude of HbA_{1c} reduction with subsequent risk of myocardial infarction, stroke, and death in a population-based cohort of patients with incident type 2 diabetes initiating metformin.

RESEARCH DESIGN AND METHODS Setting

We conducted this cohort study using data from existing population-based medical registries covering Northern Denmark region's 1.8 million residents (30% of Denmark's population) during 2000–2012. Linkage of all registries was made possible through the unique Civil Personal Registration number (19). In Denmark, most cases of type 2 diabetes are diagnosed by general practitioners (GPs), and an estimated 80% are also treated and monitored there. The remaining 20% are referred by their GP to diabetes outpatient specialist clinics at public hospitals (20). All prescribed medications can only be redeemed at community pharmacies (21). This study was approved by the Danish Data Protection Agency (Record number 1-16-02-1-08). Because this registry-based study did not involve patient contact, no separate permission from the Danish Scientific Ethical Committee was required according to Danish Legislation.

Study Population

Overall methods are described in more detail in previous reports (22,23). In brief, we identified all patients with type 2 diabetes aged 30 or older living in Northern Denmark who initiated firsttime ever glucose-lowering drug treatment between 1 January 2000 and 31 December 2012. Patients had to have at least one available HbA1c measurement within 12 months before and again \sim 6 months after treatment initiation (if several HbA_{1c} measurements occurred during day 60-180, the value closest to day 180 was chosen) (n =38,418) (22). Among these individuals, we selected all patients with incident metformin monotherapy use (n = 24,752). Information on prescriptions was obtained via the Aarhus University Prescription Database, which has held complete data coverage in Northern Denmark since 1998 (21). Information on HbA_{1c} measurements was obtained via the clinical laboratory information system research database (LABKA), which has held complete data on biochemistry test results

from all GPs and hospitals in the region since 2000 (24).

We also identified all metformin monotherapy initiators during 2000– 2012 who did not have HbA_{1c} values measured both within 12 months before and ~6 months after metformin initiation, and these patients were the nonmeasurement cohort (n = 17,142).

Early Glycemic Control: Achieved HbA_{1c} and Magnitude of HbA_{1c} Change

We defined two ways to measure early glycemic control:

- HbA_{1c} level (%) achieved 6 months after the index prescription of metformin: <6.5, 6.5–6.9, 7.0–7.4, 7.5– 7.9, ≥8.
- 2. Magnitude of HbA_{1c} reduction, defined as the absolute change in HbA_{1c} (%) from baseline before metformin initiation to the level achieved at 6 months after prescription: $\Delta -4$, -3, -2, -1, 0, +1, or +2 and above. In more detail, $\Delta -4$ included reductions of -3.5% or more, $\Delta -3$ included reductions from -2.5% to -3.4%, $\Delta -2$ from -1.5%to -2.4%, $\Delta -1$ from -0.5% to -1.4%, $\Delta 0$ from -0.4% to +0.4%, $\Delta +1$ from +0.5% to +1.4%, and $\Delta +2$ included HbA_{1c} increases of 1.5\% or more.

Cardiovascular Events and Mortality

Using the Danish National Patient Registry (DNPR) (25), we identified all patients hospitalized with myocardial infarction and stroke. Diagnoses of myocardial infarction and stroke have been previously validated with predictive values of 90% and 79%, respectively (26,27). We used the Civil Registration System to identify all deaths. We also constructed a combined outcome (death and/or myocardial infarction and/or stroke). All diagnostic codes used in the study are assembled in Supplementary Table 1. We monitored all patients from 180 days after metformin initiation until a cardiovascular event. death, emigration, or 31 December 2012.

Covariates

From the medical databases, we obtained data on patient characteristics at 180 days after metformin initiation, potentially associated with both the exposure (early glycemic control) and outcome (cardiovascular events and death). We obtained data on 19 major disease categories included in the Charlson Comorbidity Index based on patients' entire hospital contact history within 5 years before follow-up start. We separately ascertained contacts for obesity, alcoholism-related disorders, and for any macrovascular or microvascular diabetes complication, including prior clinical biochemical indication of renal disease from the DNPR and LABKA (for definitions, see Thomsen et al. [23] and Supplementary Table 1).

From the Prescription Database, we obtained information on the redemption of any other glucose-lowering drug between 14 days after the first metformin monotherapy prescription and until follow-up start. We also obtained information on any antihypertensive treatment, statins, antiplatelet drugs, and treatment with psychiatric medications before follow-up start.

From LABKA we obtained information on the latest baseline HbA_{1c} and on the latest LDL cholesterol and total cholesterol measurement taken within 12 months before follow-up start. We assessed whether recommended cholesterol targets for persons with diabetes were met or not (<2.5 mmol/L for LDL cholesterol and <4.5 mmol/L for total cholesterol) (28).

Statistical Analyses

We used contingency tables to first describe characteristics for all patients at day 180 after metformin initiation, by achieved HbA_{1c} (%) level (<6.5, 6.5–6.9, 7.0–7.4, 7.5–7.9, \geq 8), and by the magnitude of HbA_{1c} reduction in % (Δ -4 or more, -3, -2, -1, 0, +1, +2 and above). We created a stacked-bar graph figure to illustrate the distribution of achieved HbA_{1c} levels for each baseline HbA_{1c} group (Supplementary Fig. 1).

We used Cox regression analyses to compute crude and adjusted hazard ratios (HRs) with 95% CIs to examine the association between achieved HbA_{1c} level and absolute change in HbA_{1c} from baseline (%) at 6 months, respectively, and subsequent risk of cardiovascular events and death after 6 months. We adjusted all analyses for the following covariates (see Table 1 for categorization): age, sex, baseline HbA_{1c} before metformin start, year of follow-up start, micro- and macrovascular complications, obesity, alcoholism, antiplatelet drugs, statins, antihypertensive drugs, psychiatric medications, reached cholesterol target, and other glucose-lowering therapy than metformin. We repeated the adjusted analysis excluding baseline HbA_{1c}.

We repeated all analyses, stratified by age-groups and presence of comorbidity at baseline (healthy vs. comorbidity). Adjusted HRs were also stratified by baseline HbA_{1c} (%) level (<7.5, 7.5–8.9, and \geq 9) (Figs. 1 and 2). As a sensitivity analyses, we repeated our analysis while censoring all end points occurring within the first 2 years (as potentially too soon for glycemic control to have had an effect) and another including only individuals with at least 5 years of full follow-up.

To adjust for the potential residual or unmeasured effect of socioeconomic status (using low education as a proxy), we also did a sensitivity analysis with external adjustment (29), where we assumed that the relative risk of cardiovascular events in those with a low educational level was 1.33 (30) and that the proportion of people with low education was 25% among patients with good glycemic control (<7%) and 40% in those with higher HbA_{1c} levels. We used SAS 9.2 software for all analyses.

RESULTS

Table 1 presents the 24,752 patients with first-time metformin treatment according to achieved HbA_{1c} level. Compared with those who had an HbA1c of \geq 8% at 6 months, patients who achieved HbA_{1c} <6.5% were to a larger extent older (≥70 years: 27% vs. 17%), female (47% vs. 38%), and more likely to have initiated metformin in the most recent study years (started in 2010–2012: 60% vs. 35%). They also had slightly more macrovascular (15% vs. 12%) and microvascular (24% vs. 21%) complications at baseline, received more preventive medications, and had less medical obesity (8% vs. 11%). Patients with $HbA_{1c} < 6.5\%$ had a much lower baseline HbA_{1c} compared with those who attained a value \geq 8%, and more of them had received no further glucose-lowering add-on therapy within the first 180 days (Table 1). Supplementary Fig. 1 shows the distribution of HbA_{1c} achieved for each baseline HbA_{1c} group.

Table 1 also reports patient characteristics by magnitude of HbA_{1c} change. On the one hand, compared with patients with small HbA_{1c} reductions, those with a large reduction tended to be younger, had a lower prevalence of macrovascular complications, had less comorbidity, and were prescribed less preventive medication. On the other hand, patients with large reductions in HbA_{1c} had high HbA_{1c} at baseline (e.g., 93% of those with HbA_{\rm 1c} reduction of Δ -4% had a baseline HbA_{1c} >10%) and received add-on glucose-lowering therapy to a greater extent. In contrast, increasing HbA1c after metformin start was unusual and indicated young age, use of psychiatric medications, and use of drugs other than metformin rather than having a specific level of baseline HbA_{1c} (Table 1).

Median follow-up for our cohort was 2.6 years (interquartile range [IQR] 1.2-4.7). We observed 439 incident myocardial infarctions, 594 strokes, and 1,845 deaths. Figure 1 shows the unadjusted cumulative incidence of a combined outcome event by achieved early glycemic level at 180 days. The incidence was consistently lower in patients who had achieved HbA_{1c} <6.5% and was highest in patients who had an HbA_{1c} \geq 8% at 180 days after metformin. As a point of comparison, the outcome incidence in individuals with no available HbA1c test both before and after metformin (Fig. 1, black stippled line) was similar to that in patients who achieved a low HbA_{1c}.

Figure 2 shows that after adjustment for confounders, the risk of the composite end point increased with rising levels of early achieved HbA_{1c}, compared with achievement of $HbA_{1c} < 6.5\%$. The adjusted HR for the combined outcome was 1.18 (95% CI 1.07-1.30) for an HbA1c level of 6.5-6.99%, HR 1.23 (1.09-1.40) for 7.0-7.49%, HR 1.34 (1.14-1.57) for 7.5-7.99%, and HR 1.59 (1.37–1.84) for ≥8% (Fig. 2 and Supplementary Table 2). Differences between crude and adjusted HRs increased in the highest HbA_{1c} groups; that is, because patients with high HbA1c were younger and had less comorbidity at baseline, their high cardiovascular risk further increased after adjustment for these differences in prognostic factors. The adjusted model not including baseline HbA_{1c} showed consistent results for myocardial infarction, stroke, and mortality but with less precise risk estimates (Supplementary Table 2). Results were also consistent within different strata of age and presence or absence of comorbidity at baseline (Supplementary Fig. 2).

baseline		>			months of	tor motto		•							2			from	b b proling	+ 5 7 7 7 7 7 7	5			
	< 6.5	~	6.5-6.999	%	7.0-7.49%	6 7.	5-7.99%	IV	8%	T	otal	-4% or	more	- u	%	- 29	~	- 19	~	0%		+1%	+29	% or more
	n = 11.849	(48%)	n = 6 578 ()	7%) n :	= 3.035 (1)	2%) n =	1 434 (6%	n = 1.8	56 (8%)	N = 24.7	52 (100%)	n = 1.89	3 (8%)	n = 1.88	0 (8%)	n = 2.685	(11%)	n = 6.590	(27%)	n = 11.170	1(45%)	1 = 479 (7)	» n=	= 96 (0%)
Variable	n	%	n	%	n %	3	%	3	%	z	%	п	%	п	%	п	%	n	%	э	%	л %	6 n	%
Baseline HbA _{1c} , %																								
<6.5	3,998	34	222	ω	27 1	. 7	1	13	1	4,267	17	0	0	0	0	ω	0	415	6	3,715	38	98 2	3 36	5 30
6.5 to <6.9	3,792	32	1,950 3	30 2	51 8	47	3	24	1	6,064	25	0	0	0	0	25	1	2,150	29	3,776	39	95 2	3 18	3 15
7 to <7.4	1,096	9	1,445 2	22 5	48 18	78	9	49	ω	3,222	13	0	0	1	0	87	ω	1,673	23	1,383	14	64 1	5 14	1 12
7.5–7.9	696	6	940 1	14 5	69 19	9 20	1 14	134	7	2,540	10	0	0	9	1	393	15	1,537	21	504	сл	79 1	9 18	3 15
8-8.9	723	6	805	12 6	99 23	3 40	7 28	361	20	2,995	12	10	0	256	16	1,094	43	1,246	17	307	ω	55 1	3 27	7 22
9-9-9	454	4	413	63	59 13	2 25	7 18	383	21	1,866	00	185	7	636	40	659	26	310	4	56	1	14	3 6	ъ
≥10	1,090	9	803	12 5	82 19	9 43	1 30	892	48	3,798	15	2,661	93	674	43	289	11	116	2	38	0	17 4	4 3	ω
Age-group, years ≤60	4,677	40	2,517 3	38 1,	296 43	3 73	6 51	1,077	58	10,303	42	1,054	56	1,054	56	1,336	50	2,520	38	4,054	36	221 5	2 64	4 67
61-70	3,928	33	2,120 3	32 9	55 3.	2 42	9 30	468	25	7,900	32	550	29	532	28	766	29	2,145	33	3,770	34	117 2	7 20) 21
>70	3,244	27	1,941 3	30 7	84 20	5 26	9 19	311	17	6,549	27	289	15	294	16	583	22	1,925	29	3,355	30	91 2	1 12	2 13
Male sex	6,325	53	3,594 5	55 1,	713 56	5 84	4 59	1,144	62	13,620	55	1,239	66	1,184	63	1,653	62	3,651	55	5,584	50	253 5	:9 5£	5 58
Calendar year 2000–2003	540	сī	356	ω	06 10	0 17	8 12	241	13	1,621	7	228	12	264	14	296	11	445	7	338	ω	44 1	6	б
2004–2006 2007–2009	1,131 3,127	10 26	762 1 2.170 3	33 12 53 1.	06 1. 147 1	7 27 54	6 19 3 38	319 643	17 35	2,994 7,630	12 31	500 333	18 18	296 334	19 18	429 481	17 18	975 888	13 14	712 882	8 7	64 1 59 1	.5 4 12	3 15 18
2010-2012	7,051	60	3,290 5	50 1,	076 30	5 43	7 31	653	35	12,507	51	615	33	618	33	889	33	2,275	35	3,048	27	151 3	5 34	1 35
Macrovascular complications	1,774	15	1,059 1	16 5	02 1.	7 21	2 15	229	12	3,776	15	154	∞	213	12	382	14	1,070	16	1,866	17	76 1	8 15	5 16
Microvascular complications	2,848	24	1,661 2	25 7	81 20	6 32	6 23	386	21	6,002	24	336	18	373	20	597	22	1,754	27	2,799	25	120 2	8 23	3 24
Hospital-diagnosed obesity	885	00	474	7 2	32 8	: 12	6 6	200	11	1,920	00	137	7	133	7	229	9	499	00	853	00	49 1	1 20) 21
Charlson Comorbidity Index level ≥ 1	2,496	21	1,486 2	23 6	88 23	3 31	8 22	359	19	5,347	22	273	14	346	18	585	22	1,496	23	2,516	23	102 2	4 25) 30
Antiplatelet drugs	4,575	39	2,764 4	42 1,	237 4:	1 53	3 37	584	32	9,693	39	540	29	558	30	946	35	2,781	42	4,663	42	171 4	0 34	1 35
Statins	7,970	67	4,539 (69 <u>1</u> ,	966 69	5 86	2 60	1,025	55	16,362	66	957	51	1,004	53	1,562	58	4,423	67	8,091	72	274 6	4 51	1 53
Antihypertensive drugs	8,763	74	4,991 7	76 2,	238 74	4 98	2 69	1,207	65	18,181	74	1,124	60	1,190	63	1,823	68	5,057	77	8,612	77	311 7	3 64	1 67
Psychiatric medications	2,329	20	1,145 1	17 5	27 1.	7 22	7 16	327	18	4,555	18	293	16	299	16	470	18	1,143	17	2,210	20	104 2	4 36	38
Single metformin at 6 months	11,057	93	6,076 9	92 2,	724 90	0 1,2:	15 85	1.536	28	37 608	91	1.408	74	1.497	80	0.320	86	6.109	93	10.808	97	390 9	1 76	5 79
									ç						00		1	conto						

Figure 1—Combined outcome event (acute myocardial infarction, stroke, or death) by achieved early glycemic level. The cumulative incidences of a combined outcome event by achieved HbA_{1c} level 6 months after metformin start are shown among 24,752 metformin initiators in Northern Denmark during 2000–2012. As a point of comparison, the black stippled line shows the event rate among 17,134 metformin initiators in whom an HbA_{1c} measurement was missing before and after metformin initiation. Time (years) to cardiovascular disease (CVD) or death was from 6 months (180 days) after metformin initiation.

The clearest association between higher HbA_{1c} and worse outcomes was observed in patients aged 70 years or older.

Figure 3 shows that the magnitude of HbA_{1c} change predicted outcome as well. Large HbA_{1c} reductions were associated with the greatest outcome risk reductions

among patients with a high baseline HbA_{1c} (i.e., >9%), although statistical precision was limited. In patients with a low baseline HbA_{1c} (i.e., <7.5%), the pattern tended to be U-shaped, with HbA_{1c} reductions corresponding to $\Delta = -2\%$ (from -1.5% to -2.4%) predicting increased outcome risk.

Figure 2—Adjusted HRs for combined outcome event (acute myocardial infarction, stroke, or death) by achieved HbA_{1c} 6 months after metformin initiation. HRs are stratified by baseline pretreatment HbA_{1c} levels of <7.5%, from 7.5 to <9.0%, and ≥9.0%. CVD, cardiovascular disease; REF, reference (HR associated with target <6.5%).

The overall adjusted HR for a combined outcome was 0.80 (95% Cl 0.65–0.97) for $\Delta = -4$, HR 0.98 (0.80–1.20) for $\Delta = -3$, HR 0.92 (0.78–1.08) for $\Delta = -2$, and HR 0.99 (0.89–1.10) for $\Delta = -1$ compared with the reference group with no HbA_{1c} change ($\Delta = 0$) (Fig. 3 and Supplementary Table 3). An increased outcome risk was seen in patients with increasing HbA_{1c} despite metformin initiation.

A sensitivity analysis that censored all end points occurring within 2 years and was restricted to patients with at least 5 years of full follow-up (Supplementary Tables 4 and 5 and Supplementary Figs. 3 and 4) showed consistent results for both HbA_{1c} reduction and HbA_{1c} achieved, albeit statistical precision was poorer.

When we externally adjusted for unmeasured confounding resulting from socioeconomic status (proxy education) for the association between glycemic control and macrovascular events, the analyses yielded results consistent with the overall findings.

CONCLUSIONS

In this population-based study of 24,752 metformin initiators, attaining a stringent HbA_{1c} goal of <6.5% within 6 months was

Figure 3—Adjusted HRs for combined outcome event (acute myocardial infarction, stroke, or death) by magnitude of HbA_{1c} reduction from baseline to 6 months. HRs are stratified by baseline pretreatment HbA_{1c} levels of <7.5%, from 7.5 to <9.0%, and ≥9.0%. CVD, cardiovas-cular disease; REF, reference (HR associated with no change in HbA_{1c}).

associated with lower risk of cardiovascular events and mortality, with the risk gradually increasing at higher HbA_{1c} levels. A large magnitude of HbA_{1c} reduction similarly was associated with a lower subsequent risk of adverse outcomes.

Our results corroborate findings from a few previous observational studies on early glycemic control showing lowered risk of macrovascular events (15,18), and also in the UKPDS trial (31), all in patients with newly diagnosed type 2 diabetes. Olsson et al. (18), monitoring 101,799 patients from the Clinical Practice Research Data Link in the U.K. between 1995 and 2011 from start of type 2 diabetes diagnoses, found an increased risk for myocardial infarction of ${\sim}60\%$ (HR 1.6) at an HbA $_{1c}$ of 7–8% vs. 6-7%, with a median follow-up of 5.4 years (18). Our corresponding finding was slightly lower (HR 1.5 [95% CI 1.0-2.1]) comparing HbA_{1c} of \geq 8% vs. <6.5%, with a median follow-up of 2.6 years. The similar findings, despite different categorization of HbA_{1c} and use of different HbA_{1c} measure (updated means vs. early glycemic control), strengthens the validity of our results.

Our data show that achievement of stringent glycemic levels is possible in real life in at least some elderly patients with comorbidities and that reaching such levels predicts lower risk of vascular events and death. Of note, elderly patients with complications who attained stringent HbA_{1c} levels in our observational study may have been selected by caregivers through criteria that are not well described in our data, for example, by having a low risk of hypoglycemia or high patient motivation and self-care (3). In accordance, the updated statement from the American Heart Association and the American Diabetes Association suggests stringent targets for selected individual patients, including patients with a short disease duration (7).

A novel finding in our study was that the magnitude of early HbA_{1c} reduction is an independent predictor of lower cardiovascular risk and death, also after taking pretreatment HbA_{1c} level into account. Nonetheless, in the subgroup of patients who had a low baseline HbA1c (<7.5%) before metformin initiation, a reduction in the order of -2% tended to be associated with worse outcomes, consistent with findings from randomized trials (5). As a result of the statistical variation and imprecision of outcome HRs associated with limited size of the change in HbA_{1c} subgroups, our findings should be interpreted with caution.

Overall, our findings suggest that rapid glycemic response may be used as a possible source of identification of a subgroup of patients with a lower risk of adverse outcomes. It is possible that rapid glycemic responders to therapy initiation (i.e., more easy-to-treat patients) may have a different pathological trajectory and a milder variant of type 2 diabetes than patients who are poor responders. It is also possible that it is the young patients with type 2 diabetes without complications that clinicians dare to treat intensively; for example, reduce HbA_{1c} > 10% to < 7%, supported by a recent study from Denmark (32). However, we observed a clear association between early control and improved outcomes also when restricted to people older than 70 years in our study. Moreover, we have previously observed that young patients, to a lesser extent than older patients, reach an early glycemic control <7% within 6 months, possibly related to the fact that the pretreatment HbA_{1c} with young debut of diabetes often is high (33).

The strengths of this study include a population-based design within the comprehensive Danish public health care system, and accordingly, our data reflect actual clinical practice in diabetes care. Carstensen et al. (34) showed a high sensitivity and positive predictive value (>95%) for identifying patients with type 2 diabetes using Danish registries, with GP registration as the gold standard. Positive predictive values for important comorbidities are also documented as being high in the DNPR (25). Furthermore, we have a comprehensive assessment of cardiovascular events and death, and validity of these codes are also high (26,27). We only looked at myocardial infarction, stroke, and death, vet other studies have found similar associations with glycemia for heart failure, as summed in the meta-analysis by Ergou et al. (35) Finally, we only included metformin initiators, increasing the homogeneity of the population studied and representing the clinical practice today with metformin as the preferred initial pharmacological agent for type 2 diabetes (4). Whether early glycemic control by other oral glucoselowering drugs is associated with similar benefits remains to be proven.

Study limitations included that only approximately half of all potentially eligible patients had HbA_{1c} measurements within the right time frame around therapy start. The fact that patients with no HbA_{1c} measurement available had low outcome risks suggests that this subgroup might have been less severe at start. Over time, the frequency of HbA_{1c} measurements has increased, and because treatment guidelines have changed over time from initial lifestyle modification to emphasizing early drug treatment, it is likely that patients had high HbA_{1c} levels in the beginning of our study period primarily as a result of late initiation of medical therapy and that HbA_{1c} measurements from recent years more reliably reflect baseline glycemic control in newly diagnosed type 2 diabetes. Nonetheless, analyses stratified by period of metformin initiation showed consistent results. Moreover, prescription redemption is only a marker of actual drug consumption. We also have to bear in mind that the guidelines have changed over time to encompass individualized therapy (3,4). Pretreatment HbA_{1c} levels have decreased substantially over time in Denmark and in other countries, and achievement of early glycemic control has improved (22).

By regression analyses and stratification, we were able to evaluate the effect of a range of possible confounders of the association between early glycemic control and cardiovascular events, and interestingly, few differences were seen comparing crude and adjusted results and in stratified analyses. Also, the analysis adjusted for potential unmeasured confounding by educational level showed consistent results. We had no data on tobacco smoking but were able to adjust for a number of smokingrelated diseases. Still, imperfectly measured, unmeasured (e.g., BMI, diet, physical activity, social support, motivation, and self-care), or unknown factors may have affected our risk estimates.

In conclusion, these real-world data provide evidence that not only achievement of early glycemic control but also the magnitude of HbA_{1c} reduction predicts decreased risk of cardiovascular outcomes and mortality in metformin initiators, independent of baseline HbA_{1c} levels at treatment initiation. Whereas causality is difficult to prove in our observational study design, these results provide an early prediction tool for identification of patient subgroups with type 2 diabetes that have increased risk for cardiovascular complications and death.

Funding. The Department of Clinical Epidemiology is a member of the Danish Centre for Strategic

Research in Type 2 Diabetes (DD2), supported by the Danish Agency for Science (grant no. 09-067009 and 09-075724), the Danish Health and Medicines Authority, and the Danish Diabetes Association. Project partners are listed on the website at www.DD2.nu.

Duality of Interest. E.S.B. has been an employee of Novo Nordisk Scandinavia AB but has taken a position as a general practice physician in Søndre Land Kommune, Norway as of 1 February 2016. C.L.H. is an employee of Novo Nordisk Scandinavia AB. This study was partly supported by a research grant from Novo Nordisk A/S to Aarhus University. The Department of Clinical Epidemiology is involved in studies with funding from various companies as research grants to (and administered by) Aarhus University, including the current study. No other potential conflicts of interest relevant to this article were reported.

The Department of Clinical Epidemiology at Aarhus University had control of the data and retained final authority over design, content, and interpretation of the analyses, as well as the decision to submit the manuscript for publication.

Author Contributions. E.S., L.M.B., S.P.J., E.S.B., C.L.H., and R.W.T. contributed to the study concept and design. E.S., L.M.B., S.P.J., L.P., H.N., E.S.B., C.L.H., and R.W.T. analyzed and interpreted data. E.S., S.P.J., and R.W.T. drafted the manuscript. L.M.B., S.P.J., L.P., and R.W.T. contributed to data acquisition. L.M.B. and L.P. contributed to statistical analysis. L.M.B., L.P., H.N., E.S.B., and C.L.H. critically revised the manuscript for important intellectual content. S.P.J., L.P., E.S.B., C.L.H., and R.W.T. supervised the study. S.P.J., E.S.B., C.L.H., and R.W.T. obtained funding. S.P.J. and R.W.T. provided administrative, technical, or material support. R.W.T. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Prior Presentation. Part of the results were presented as poster number 1092-P (General Poster Session 11 June and selected for showcase in a Moderated Poster Discussion e-Poster Theater 12 June) at the 76th Scientific Sessions of the American Diabetes Association, New Orleans, LA, 10–14 June 2016. Part of the results were presented as oral presentation number 261 at the 32nd International Conference on Pharmacoepidemiology & Therapeutic Risk Management of the International Society for Pharmacoepidemiology, Dublin, Ireland, 25–28 August 2016.

References

1. American Diabetes Association. Standards of medical care in diabetes. Diabetes Care 2004; 27(Suppl. 1):S15–S35

2. International Diabetes Federation Guideline Development Group. Global guideline for type 2 diabetes. Diabetes Res Clin Pract 2014;104:1–52 3. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2015;58:429–442 4. American Diabetes Association. Summary of revisions. In *Standards of Medical Care in Diabetes—2016*. Diabetes Care 2016; 39(Suppl. 1):S4–S5 5. Hemmingsen B, Lund SS, Gluud C, et al. Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev 2013;11:CD008143

6. Garber AJ, Newcomer JW, Hennekens CH. Lower A1c targets in type 2 diabetes and increased mortality: causal or casual? Am J Med 2013;126:1033–1034

7. Fox CS, Golden SH, Anderson C, et al.; American Heart Association Diabetes Committee of the Council on Lifestyle and Cardiometabolic Health, Council on Clinical Cardiology, Council on Cardiovascular and Stroke Nursing, Council on Cardiovascular Surgery and Anesthesia, Council on Quality of Care and Outcomes Research, American Diabetes Association. Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 2015;38:1777–1803

8. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008;359:1577–1589

9. Hayward RA, Reaven PD, Wiitala WL, et al.; VADT Investigators. Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2015;372:2197–2206

10. Cefalu WT, Rosenstock J, LeRoith D, Blonde L, Riddle MC. Getting to the "heart" of the matter on diabetic cardiovascular disease: "thanks for the memory." Diabetes Care 2016;39:664–667

11. Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000;321:405–412

12. Eeg-Olofsson K, Cederholm J, Nilsson PM, et al. New aspects of HbA1c as a risk factor for cardiovascular diseases in type 2 diabetes: an observational study from the Swedish National Diabetes Register (NDR). J Intern Med 2010; 268:471–482

13. Skriver MV, Støvring H, Kristensen JK, Charles M, Sandbæk A. Short-term impact of HbA1c on morbidity and all-cause mortality in people with type 2 diabetes: a Danish population-based observational study. Diabetologia 2012;55:2361–2370

14. Nichols GA, Joshua-Gotlib S, Parasuraman S. Glycemic control and risk of cardiovascular disease hospitalization and all-cause mortality. J Am Coll Cardiol 2013;62:121–127

15. Östgren CJ, Sundström J, Svennblad B, Lohm L, Nilsson PM, Johansson G. Associations of HbA1c and educational level with risk of cardiovascular events in 32,871 drug-treated patients with type 2 diabetes: a cohort study in primary care. Diabet Med 2013;30:e170–e177 16. Chiang HH, Tseng FY, Wang CY, et al. Allcause mortality in patients with type 2 diabetes in association with achieved hemoglobin A(1c), systolic blood pressure, and low-density lipoprotein cholesterol levels. PLoS One 2014;9: e109501

17. Kranenburg G, van der Graaf Y, van der Leeuw J, et al.; SMART Study Group. The relation between HbA1c and cardiovascular events in patients with type 2 diabetes with and without vascular disease. Diabetes Care 2015;38:1930–1936

Acknowledgments. The authors thank biostatisticians Johnny A. Kahlert and Nickolaj Risbo Kristensen, both from the Department of Clinical Epidemiology, Aarhus University Hospital, for their kind help and advice on data analyses and preparation of figures.

18. Olsson M, Schnecke V, Cabrera C, Skrtic S, Lind M. Contemporary risk estimates of three HbA1c variables for myocardial infarction in 101,799 patients following diagnosis of type 2 diabetes. Diabetes Care 2015;38:1481–1486 19. Schmidt M, Pedersen L, Sørensen HT. The Danish Civil Registration System as a tool in epidemiology. Eur J Epidemiol 2014;29:541– 549

20. Thomsen RW, Friborg S, Nielsen JS, Schroll H, Johnsen SP. The Danish Centre for Strategic Research in Type 2 Diabetes (DD2): organization of diabetes care in Denmark and supplementary data sources for data collection among DD2 study participants. Clin Epidemiol 2012;4(Suppl. 1): 15–19

21. Ehrenstein V, Antonsen S, Pedersen L. Existing data sources for clinical epidemiology: Aarhus University Prescription Database. Clin Epidemiol 2010;2:273–279

22. Thomsen RW, Baggesen LM, Svensson E, et al. Early glycaemic control among patients with type 2 diabetes and initial glucose-lowering treatment: a 13-year population-based cohort study. Diabetes Obes Metab 2015;17:771–780

23. Thomsen RW, Baggesen LM, Søgaard M, et al. Early glycaemic control in metformin users receiving their first add-on therapy: a population-based study of 4,734 people with type 2 diabetes. Diabetologia 2015;58:2247–2253 24. Grann AF, Erichsen R, Nielsen AG, Frøslev T, Thomsen RW. Existing data sources for clinical epidemiology: the clinical laboratory information system (LABKA) research database at Aarhus University, Denmark. Clin Epidemiol 2011;3: 133–138

25. Schmidt M, Schmidt SA, Sandegaard JL, Ehrenstein V, Pedersen L, Sørensen HT. The Danish National Patient Registry: a review of content, data quality, and research potential. Clin Epidemiol 2015;7:449–490

26. Madsen M, Davidsen M, Rasmussen S, Abildstrom SZ, Osler M. The validity of the diagnosis of acute myocardial infarction in routine statistics: a comparison of mortality and hospital discharge data with the Danish MONICA registry. J Clin Epidemiol 2003;56:124–130

27. Wildenschild C, Mehnert F, Thomsen RW, et al. Registration of acute stroke: validity in the Danish Stroke Registry and the Danish National Registry of Patients. Clin Epidemiol 2013;6:27–36 28. Danish Society of Cardiology. Dyslipidemia. Available from http://nbv.cardio.dk/dyslipidaemi. Accessed 4 October 2016.

29. Lash TL, Fox MP, Fink AK. Sensitivity analyses for unmeasured confounding. In *Applying Quantitative Bias Analysis to Epidemiological Data*. Lash TL, Fow MP, Fink AK, Eds. Oxford, Springer-Verlag, 2009 30. Rasmussen JN, Rasmussen S, Gislason GH, et al. Mortality after acute myocardial infarction according to income and education. J Epidemiol Community Health 2006;60:351–356

31. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998;352:854–865

32. Mor A, Berencsi K, Svensson E, et al. Prescribing practices and clinical predictors of glucose-lowering therapy within the first year in people with newly diagnosed type 2 diabetes. Diabet Med 2015;32:1546–1554

33. Svensson E, Baggesen LM, Thomsen RW, et al. Patient-level predictors of achieving early glycaemic control in Type 2 diabetes mellitus: a population-based study. Diabet Med 2016;33: 1516–1523

34. Carstensen B, Kristensen JK, Marcussen MM, Borch-Johnsen K. The National Diabetes Register. Scand J Public Health 2011;39(Suppl.): 58–61

35. Erqou S, Lee CT, Suffoletto M, et al. Association between glycated haemoglobin and the risk of congestive heart failure in diabetes mellitus: systematic review and meta-analysis. Eur J Heart Fail 2013;15:185–193